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Outline of Talk 

• Model and  Data-driven methods for diagnosis & 
anomaly detection 
o Pros and cons 

• Data-driven methods 
o Three case studies 

• Improving diagnosers using classifiers 

• Anomaly detection – discovering new faults 

• Combining model- and data-driven diagnosis  

    Also called hybrid diagnosis 

o What do we learn from these approaches? 
• How well do they generalize? 

• Can we come up with a systematic framework for combining 
hybrid (model and data driven) diagnosis? 
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Situating the presentation 

• Model-based  

o Physics-based models 

o Equations/graphical representations 

o Residual Analysis, Consistency-based methods 

 

• Statistical Methods (Data-driven) 

o PCA, PLS, ICA, and their variations 

 

•  AI-based methods (Data Driven) 

o Learning new knowledge from the data 
• New features for classifying faults, better thresholds 

• Finding new faults …. 
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Model- versus Data-Driven 
Diagnosis Approaches 

• Data-driven Approaches 

• Address limitations of 

model-driven approaches 

o Augment models with 

historical data 

o Continued monitoring, data 

collection provides up-to-date 

behaviors of system 

o Can include human-system 

interaction data 

o Can account for changing 

environments & specific 

scenarios of interest 
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• Model-based Approaches 

• Pros 
o Formal representations 

o Automated analysis 

(reasoners) 

o Verification & Validation 

• Cons 
o Models necessarily 

incomplete, sometimes 

unavailable 

o Have finite shelf life 

o Typically don’t account for 

decision making situations with 

humans in the loop 

Context: Complex Systems (Vehicles, Industrial Plants, Power Plants) 



Data Driven Approaches 
Challenges 

• Data Acquisition 
o Heterogeneous  
o Synchronizing distributed data collected at different rates 

• Data Storage & Retrieval, Curation, Preprocessing 
o Distributed or centralized? 
o Increasingly non relational (noSQL) 
o Problem-driven curation and pre-processing 

• Analytics & Machine Learning 
o Fit Data to Problem 
o What is the right algorithm to use? 
o Offline versus online analysis 

• Feedback & Control 
o How are they affected as we incorporate new patterns into 

monitoring system? 
o Human Machine interfaces 
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Real world systems & scenarios 



My Work 
Three Case Studies  

• Improving Diagnosers of Aircraft Systems 

o Original diagnoser – designed by human expert 

 

• Anomaly Detection for discovering new faults in 
aircraft flight 

o Augmenting existing diagnosers with new faults 

 

• Combined Model- and Data-Driven Diagnosis 

o Diagnosis from residuals – generated from physics 
models then augmented with additional residuals 
generated from data 
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All of these studies work with real data, and involve experts in the loop 



Improving Diagnoser 
Functionality 

Mack, D. L., Biswas, G., Koutsoukos, X. D., & Mylaraswamy, D. 

(2017). Learning Bayesian Network Structures to Augment 

Aircraft Diagnostic Reference Models. IEEE Trans. Automation 

Science and Engineering, 14(1), 358-369. 
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Case Study  1 
Single Aircraft Operations 
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Aircraft Condition 
Monitoring 
Function 

Evidence Handling, 
State Determination, 
Cascade Analysis, 

Active Querying 

Bipartite Graph 
Faults   Evidence 

Precursors 
Quicker Detection 
Anomaly Detection 

Learned Knowledge  Improved Detection & Isolation 
Felke, 1994 



Example Reference Model 
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Bipartite Graph 

Faults 
𝑓𝑚𝑖 

Active Monitors (𝑚𝑗) 

Reasoner: Naïve Bayes  
 P(fmi | mi, mj, …, mk) =   P(mi | fmi)  P(mj | fmi)  ……  P(mk| fmi) 

and   fm1, fm2, ….., fmn   do not interact 



Improving Diagnoser 

• Regional Airline Data 
o Several Aircraft over Several Years 

o 182 Sensors at Different Sampling Rates 

o Varying Flight Durations(Minutes to Hours) 

o In Binary form (DAR files): Up to 12MB per flight 

o Clean vs. Corrupt 

• Trail of Data 
o Extract information into usable form (Data Warehouse) 

• Build Database (Data Warehouse) 

• 12 Tail Numbers for 4 engine aircraft 

• Flight times for each (up to 5 flights per day; include short hops) 

• Multiple years > 6000 Flights 

• Multiple Fault Annotations 
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Data Transformation 

Raw Parameters 
Engine 1 Speed  
Engine 2 Speed 
Engine 3 Speed  
Engine 4 Speed 
Core Speed Engine 1 
Core Speed Engine 2 
Core Speed Engine 3 
Core Speed Engine 4 
Air Temperature 
Engine 1 Exaust Gas 
Temperature 
Engine 2 Exaust Gas 
Temperature 
Engine 3 Exaust Gas 
Temperature 
Engine 4 Exaust Gas 
Temperature 
Flight Phase 
Altitude 

Startup Indicators 
StartTime 

IdleSpeed 

peak Engine Temperature 

Core Speed at Peak 

StartSlope 

StrtCutOff 

LiteOff 

prelit Engine Temperature 

phaseTWO 

timeToPeak 

TakeOff Indicators 
peak Core Speed 

peak Engine Speed 

peak Engine Temperature 

takeoff Core Speed 

takeoff Engine Speed 

takeoff Air Temperature 

takeoff Altitude 

takeoff Engine Temperature 

takeoff Margin 

Rolldown Indicators 
Rolltime 

resdTemperature 

dip Engine Temperature 

Corespeed at Dip 

Corespeed Slope 

Corespeed Cutoff 

no Start 

slow Start 

Hung Start 

High Temp 

multStart 

phOneDwell 

hotStart 

medTempMargin 

lowTempMargin 

overSpeed 

overTemp 

abruptRoll 

highRollEGT 

rollBearing 
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Condition Indicators Diagnostic Monitors Sensors on Aircraft 



Adverse Events 
Three Examples 
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Fuel metering 
fault

Blade break/nozzle 
damage

Fuel manifold 
rupture



Machine Learning Approach 
 • Classifier methods to find additional/ refined 

features to classify faults more accurately 

o Used Tree-Augmented Naïve Bayesian (TAN)  Classifier 

o Why TAN? 

• Simple extension to Naïve Bayes classifiers; not as a complex as 
full Bayesian network 

o Use n-fold cross validation to validate TAN classifier 

o Update Reference Model 

o Test, Validate, & Deploy 
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Working under constraint – Reasoner changes/updates  require recertification 
But updates/changes to  reference model do not (data)  



Introduction to TANs 
• TAN structure 

o Naïve Bayes + capture some dependence between 
variables 

o TAN structures reduce this dependence information to 
capturing the dependence with one other variable (i.e., 
capture most important dependence) 

• Examine TAN structure  

o Class note: Fault 

o Obs Root node 

o Rest of CIs + 

 DMs 
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Dependencies – directional 
Represent causal relations 



Deriving TAN structures 
• Can be created by Greedy search 

o Add/remove links  

o Example: 
• Find most correlated node to fault – make it the observational root 

node 

• Connect fault node to this node + all other evidence nodes 

• Order nodes by correlation value between them 

• For each of the remaining evidence nodes: pick the subset with 
highest correlations that satisfies TAN structure 

• Our approach 
o Use Minimum Weighted Spanning Tree (MWST) using Mutual 

Information (MI) for edge weights 
• Connect fault node to all evidence nodes 

• Pick observational root node 

• Add directionality to edges by recursively directing all edges away 
from observational root node 
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Updating Reference Model 
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• Update DMs 
o Thresholds; e.g., FM2  DM2 

 

• Create “Super Monitor”  
o Dependencies, e.g., DM1 & DM4 substituted by super monitor DM14 

DM 1 

Failure 
Mode #1 

Failure 
Mode #2 

Failure 
Mode #3 

DM 2 DM 3 DM 4 DM 5 

• Add new DMs? 
• New (FM1  DM3) 

DM 14 

Update: P(FM2|DM1,DM2) 

Update: P(FM1|DM1,DM2,DM4) 

Update: P(FM1|DM1,DM2,DM3,DM4) 

P(FM1|DM1,DM4) > P(FM1|DM1)P(FM1|DM4) 



Case 1.1: Fuel metering fault  

• Focus on incidents reported in FAA  Aviation Safety 
Information Analysis & Sharing (ASIAS)  database 

o Select incident associated with an aircraft – “Overheated 
engine – Imminent Fire Hazard” warning: “Land immediately”  

• Assume 50 flights before actual incident occur, likely to 
indicate degrading behavior that led to incident 

• Classifier  results 

o 10-fold  cross validation 
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Accuracy False Positives False Negatives 

99.6% 0.5% 0% 



Generated TAN Structure 

• Class = FuelHMA 

 

• Expert’s attention 
drawn to relationships 
between CI’s for 
different phases of the 
flight 

 
o Rolltime & dipEGTC 

during shutdown phase 

 

o  PeakEGTC & startTime 
during startup phase. 
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Anatomy of the FuelHMA incident &  

impact on Reasoner 
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Idling speed drop 

Actuator fault 

Aggressive controller 

Sluggish start 

Controller saturation 

Over-temp condition 

Auto shutdown 

Peak EGT monitors 

LiteOff monitors 

Idle speed Monitor 

Incident 

Shutdown Report 

Event Timeline 

~ 10 flights 
~ 20-30 flights ~ 40-50 flights 

Original Model 

Improved Model 

Expert’s Analysis 



Case 1.1: Fuel HMA  
• Results from Binning 

 

 

 

 

 

 

• Bin 4 shows Connection 

o Validates Adverse Event Description 
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Bin Training 
Flights 

Accuracy 
Holdout 

set 

FP% Obs 
Root node 

(ORN) 

Children 
ORN 

Notes 

1 1—10  97.65% 2.30 IdleSpeed StartTime Thresholds chosen from 
this  Bin due to low FP% 

2 11—20  93.9% 5.70 peakEGTC liteOff, 
dipEGTC 

peakEGTC  important 
node 

3 21– 30  94.65% 5.30 peakEGTC liteOff, 
dipEGTC 

peakEGTC important 
node 

 

4 31 – 40  96.62% 3.50 startTime peakEGTC Links startTime & 
PeakEGTC 

5 41 – 50  96.06% 4.10 liteOff Phase Two 
RollTime 

Links Startup & 
Rolldown CI 



Results:  Fuel Metering Fault 
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Case 1.3: System-level fault 
• Event Information 

o Engine 1 Fire warning illuminated  

• What classifier told us ? 

o Both engine 1 & 3 showed fault manifestations 

o Fault Manifold was leaking  (supplies multiple engines) 

o Manifestation time? 

• Results 

o Accuracy = 90.3%; FP rate = 5.4%  (one class classifier) 

o What about two class classification? 

• Fuel HMA  & Fuel Ma nifold failure 

• Fuel  Manifold accuracy drops to  77.5% & FP rate 22.5% 
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Issues 

• Generalizing from 1-class classifier to multi-class 
classifiers 
o What are the consequences? 

o How do we evaluate? 

 

• Possible solution: Feed output from classifiers into 
Bayes net to resolve dependencies and rank 
hypotheses  
o Related past work:  

• combine PCA + SDG (Tidriri, et al., 2016) 

• PCA + observer methods (Wang & Qin, 2002) 

• Linear model predicted by KF into ANN (Siswantoro, et al., 2016) 
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More General approach: Develop fusion methods? 



Anomaly Detection 
Finding unknown faults 

Mack, D. L., Biswas, G., Khorasgani, H., Mylaraswamy, D., & Bharadwaj, R. 
(2018). Combining expert knowledge and unsupervised learning techniques 
for anomaly detection in aircraft flight data. at-
Automatisierungstechnik, 66(4), 291-307. 
 

Biswas, G., Khorasgani, H., Stanje, G., Dubey, A., Deb, S., & Ghoshal, S. (2016). 
An application of data driven anomaly identification to spacecraft telemetry 
data. In Prognostics and Health Management Conference. 
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Anomaly Detection 
• Finding patterns in data that do not correspond to 

expected (normal) behavior 
o Also called outliers 
o Anomaly detection related to Novelty detection 

• Types of Anomalies 
o Point anomalies 

• Credit card fraud detection 

o Contextual anomalies 
• Patterns extracted from a spatial region or a time sequence 

o Need contextual + behavioral attributes 

• Used a lot in time series applications 
o Fault detection 

o Collective anomalies 
• Collection of data points represents an anomaly with respect to 

the entire data set 
o Example, a decreasing trend in time series data – each point is within 

bounds but the data points over time should be steady or increasing 
gradually 
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Chandola, Banerjee, & Kumar (2009). “Anomaly Detection: A Survey,”  
ACM Computing Surveys, 41(3): 15-58. 



Case Study 2 
Unsupervised Anomaly Detection 

• Exploratory, unsupervised learning 
o Look for Previously Undetected, and Unknown Anomalies 

• Data unlabeled, but work with entire data set – big 
data problem 

• Approach 
o Start with flight segments (contextualized – take off segments) 

o Reduction and Discrete Feature Generation across Time Series 

o Generate Dissimilarity Measures to compute pairwise 
dissimilarities among flights 

o Find anomalous flight segments 
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Step 1: Preprocessing 

• Transform curated data to produce a multi-dimensional data structure 
𝑓𝑙𝑖𝑔ℎ𝑡𝑠 × 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 × 𝑠𝑖𝑔𝑛𝑎𝑙 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚𝑠  for exploration 

• Feature reduction: continuous signals, multiple sampling rates to 
discrete features  
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Step 2: Unsupervised Learning 

• Dissimilarity matrix (pairwise distance between 
every object pair) 

• Hierarchical Clustering algorithm (UPGMA) 

• Outliers – individual objects or small groups 
sufficiently different from nominal clusters 
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Step 3: Anomalies 

• Characterizing Anomalies 

o Extract significant features and consult experts to 
characterize anomalies 
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Nominal 
Data  

Anomalous 
Groups  

Significant 
Features 

Find significant  
features 

Anomaly 
Type 1 

Anomaly 
Type 2 

Anomaly 
Type k 

. . . 

Expert 
Interpretation 



Example: Anomalous Group 3 
Steep Takeoffs 

o Flight Path acceleration at takeoff 
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Flight # 1256 not unusual 
Acceleration slowed down: 

unusual,  
but Autopilot in control 

Flight # 3316: Near stall 
condition: confirmed by auto 

thruster setting 
Auto thruster disengaged 



Combining Model + Data 
Driven Methods: 

Hybrid Approaches 

Khorasgani, H., & Biswas, G. (2018). A methodology for 

monitoring smart buildings with incomplete models. Applied 

Soft Computing, 71, 396-406. 
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• It is not feasible to generate an accurate and 
complete model for smart buildings 
o Especially difficult because highly precise and accurate 

spatio-temporal models very expensive to create 

o But models of components and subsystems – possible  
• Outdoor air unit (OAU) 

o Relationship between a fan’s static pressure and airflow is nonlinear 
and a function of the fan’s rotational speed1. 

o The performance of the exhaust fan and the output fan are not 
independent but the dependency is not modeled.  

o Unknown parameters such as wind speed, and the air filter’s resistance 
affect the model. 

• May not have training data for all the operation 
modes and fault modes 

33 

Case Study 3:  
Model + Data-driven diagnosis 

Smart Buildings 
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Model-based Fault Detection and 
Isolation 

34 

• Model-based Approaches: 

o Use a physics-based model that defines nominal/faulty 
behavior of a dynamic system to detect faulty behaviors. 

 

 

 

Fault detection 

System 
fault 

inputs 

Measurement
s Residuals 

Hypothesis 

tests 

Residual: A fault indicator, based on a deviation between 
measurements and model-equation based computations. 

Hypothesis test: determines when change in a residual values are 

statistically significant. 
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Model-based Fault Detection 
and Isolation in OAU 

08/29/2018 

• Faults 
o Only one fan is operating (in 

normal situation they are both 
on or off) 

o Exhaust fan or outdoor fan 
filters are  dirty/blocked 

• Diagnoser design:  
o The complete model was not 

available 
• Used laws of physics to derive 

relationships between fan 
speed, static pressure, and 
airflow 

• Developed a maximum 
likelihood estimator (MLE) to 
estimate the parameters 

o Analytical redundancy 
relationship (ARR) approach 
to generate the residuals 

o Z-test [Biswas et al.,2003]  as 
the hypothesis test 

IFAC Safeprocess 2018, Warsaw 

• Physical laws to derive relations 
between exhaust fan, outside fan 
speed, static pressure and airflow 

 

𝑃2 = 𝑃1

𝐷2

𝐷1

2
𝑁2

𝑁1

2
𝜌2

𝜌1
;  𝑄2 = 𝑄1

𝐷2

𝐷1

3
𝑁2

𝑁1
 

 
𝑄𝑖 → 𝑎𝑖𝑟𝑓𝑙𝑜𝑤; 𝐷𝑖 → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟;  

 𝑁𝑖 → 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑; 𝑃𝑖 → 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒;  
𝜌𝑖 → 𝑎𝑖𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦   for fan i 



Data-Driven Approach 
Updating Diagnosis Model 
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Unsupervised Data-driven Feature 

Extraction 

37 

• Preprocessing 
o Standardizes the time series variables (10, 396 training samples) 

• Clustering 
o  Extracts the clusters in the data set (used dbscan2 – 5 anomalous groups) 

• Significant Features 
o Set of features that best distinguish an anomalous cluster from nominal operations 

Operational 
Data 

O1 

O2 

On 

. 

. 

Preprocessing 
Clustering 

G1 

G2 

Gp 

. 

. 

Nominal Groups 

Anomalies 

Significant 
Features 

Distance 
Metrics 

o1 

o2 

on 

. 

. 

Outliers 
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Mack, et al,DX-16; Automatisierungstechnik, 2018 
Biswas, et al., IJPHM 2016 



The Operating Modes & Their 
Significant Features  
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Integrated Model + Data driven 
 Fault Diagnosis 

08/29/2018 

Hybrid diagnosis reference model 

• Model-based 
diagnosis:  
o Monitors: outputs of 

the hypothesis tests 

• Data-driven 
diagnosis: 
o Monitors: selected 

features 

• Integrated approach 
o Monitors: residuals+ 

significant features 
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Discussion 
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Data-driven Diagnosis Historical Data 

Feature Selection & 
Extraction 

Fault Isolation 
Classifier Methods 

Class + Probabilities 

Classifier Design 
Machine Learning 

Fault Detection 
Filtering Methods 

Fault Isolation 
Logical Methods 

Probabilistic 
Inference 

Residual  
Generation & 

Selection 

Model-driven Diagnosis 
System Model(s) 

D
iag

n
o

stic R
esu

lts 

Our work thus far:  Classifier output  Residuals  Combined Fault Isolation 

What about:  Residual Analysis output  Classifier  Classifier-based diagnosis? 
Currently working on this approach ….. 



Next Steps 

• Fault Detection Refinement & Anomaly detection 
methods apply 

• What about multiple manufacturing/vehicle processes? 
o Equivalent to a fleet of aircraft 
o Projects working on: Prognostic Scheduling 

• Impact on Control 
o What about fault tolerance and fault adaptivity? 
o Current project: Reinforcement learning for Fault Adaptive 

control (better performance than model predictive control) 

• Area not explored – virtualization of complex processes; 
use of cloud computing architectures 
o Optimization of manufacturing operations – exploiting 

redundancy 

• Area not explored – Cybersecurity 
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